
ON THE DUALITY OF OPTIMAL CONTROL 

AND TRACKING PROBLEMS 
PMM Vol. 34, No3, 1970. pp.429-439 

A. B. KURZHANSKII 
(Sverdlovsk) 

(Received January 27, 1970) 

The methods of lJl] are used to investigate the duality of a tracking problem with con- 

stantly acting disturbances and a control problem with restricted coordinates. Similar 

matters are discussed for systems with lag. The set of problems in question was first pro- 

posed and discussed in N. N. Krasovskii’s seminar at Ural University. The elements of the 

theory of duality p. 21 of control and tracking problems are thus applied to a specific 
class of infinite-dimensional problems. 

1. Tracking under con#trntly acting dlrturbrncrr. We are given 
the linear n-dimensional system 

dx/dr=Ax+Bf (1.1) 

with the constant n X n- and IZ X r-dimensional matrices A and B and with r- 
dimensional constantly acting disturbances f (T) at the input. We assume that the actual 

function f (I-) in (1.1) is not known and that we are given only the estimate f E Fl 

for all possible f, i.e. that we are given only a description of the set Fr. 
We shall disregard more general estimates, limiting our attention to the following 

classes of functions f. 
1) The set Ftconsists of all the r-vector functions of the space L It, 61 with a norm 

bounded by unity, 
a 

PL (f) = 1 r If 611 dt < 1 (r 
(1.2) 

is the finite-dimensional norm of the +-vector 1) 

2) The set Fr consists of all r-vector functions of the space L, it, 61 forming a 

bounded convex balanced absorbing set [3] in L, It, 191. 
Under these conditions the set Fl is closed in L, [t, 9;. Assigning the corresponding 

Minkowski functional pp,* to Fl, we obtain [3] a certian norm for the functions f from 

L, it, 41. 
The condition f E Fl can be rewritten as 

Pi, (f) < 1 (1.3) 
3) the set Fl = {f (T) : f (z) = dF (T) / d+r}; the dF (r) / dr in this definition 

are the generalized derivarives p] of the restricted-variation functions F satisfying the 

inequality 

1’~ (II’) = iy ,dr;, ,( 1 
1 

(1.4) 

The signa1 z tT) = Gx (T) (c * is a constant ( m X n )-matrix) 

is detected in the interval [t, Q] . 

(1.5) 

We are required to find the linear operation (functional) q~ [z] = c1 which isolates 
from any possible signal (t -vector function) z (1) the value & which differs least from 
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the required value I; = c’x (0) (c is a known vector and the prime denotes transposi- 

tion). We seek the operation cp in a prescribed class ‘p E Q, identifying cp [z] with 

the function v (t) E v, where the class V clearly corresponds to <D_ 
Writing out the solution of (1.1) with the boundary condition ~8 = x (a), we obtain 

8 

z(t) = GX (r, f)]a - s GX [r,E] fV(&% + 

dX It, e1/ dt = AX it, 61, X [t, tl = E 

In accordance with the standard procedure of tracking theory fl, 21. we assume fulfill- 
ment of the zero-bias conditions whereby the required operation cp [z] must isolate 

c = c’z (a) exactly when f (r) z 0 . This implies fulfillment of the equations 

cp IGX Ir, 61~1 = c’xe, cp IGX [T, +I] = c' (1.6) 

From now on we assume that 
@= u o,Y, @“={cp:(Icpy~v~ 

Y 

where 1 cp 1 is some norm in the appropriate function space. Let 

Fp = {f : P-V E Fd 

i. e. let F, represent the set Fl expanded lo > 0 times, and 

F, = U F, 
P 

Problem 1.1. For a given e > 0 we are to find the optimal cp”from among the 

operations cp E 0 satisfying (1.6) which ensures fulfillment of the inequality 

maxf I cp” [z (6)l - c’s (6) 1 < e V E Fd (1.7) 
for any possible signal z (r) under the condition 1 cp” I= min = v”. 

Condition (1.7) in Problem 1.1 is equivalent to 

maxjl cp” 12 (+)I - c’x (4) I ,( ep ItI U E Fo) (W 
where in accordance with (l),(2), (3) the norm p If] is either pr. If], or f$,* if), or 

PV” [Fl. 
Problem 1.2. To find from among q E <p, the optimal operation @‘which 

ensures that $2” py I(PIz(f)l -c’x(t-q( = i?, 
I (W 

Problem 1.2 is meaningful if es > 0. Condition (1.9) is equivalent to the definition 
of the smallest number e which satisfies condition (1.8) for q E @, . 

Note 1.1. The fact that, for example, the norm. 1 $11 in Problem 1.1 does not 
necessarily grow to infinity as E -, 0 is essential to our formulation. In principle, the 
problem may be solvable even for E = 0. System (1. l), (1.2). for which we have 
v” < CC in the solution of Problem 1.1 for e = 0, can be called c-trackable under con- 

stantly acting disturbances. The effective conditions which ensure this property (see 
also [4]) will not be discussed in the present paper. 

S. Solution of the trroking problem. I.et the number a > 0 be given. 
We begin by considering the existence of a not necessarily optimal operation cp [z] which 

satisfies Problem 1.1. Prom (1.5)-(1.7) we obtain 
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from which we infer that 
8 

Let the set Fr be of the form (1) . 
jugate of the space L [t, 61, 

Then, considering q (z) as elements of the con- 
we find that condition @. 1) is equivalent to the inequa- 

lity 
vrai max,y* Iq (z)l & e, r=<r<% 

which can be replaced by 
max,y* Iq (?)I < e, r<r\(% (2.3) 

by virtue of the absoiute continuity of q (T) (see (3.8)). 
Here II* is the finite-dimensional conjugate of y. Identifying @ with the given class 

of (possibly generalized) functions V = {v), we seek Y E V instead of cp e @. With 
these considerations in mind we transform Problem 1.1 into 

Problem 2.1.1. To find the optimal V” for which i v* 1 = Y” = min from 
among the m-vector functions U E v which solve the problem 

a 

s v (E) GX [E, +e] BdE = cF (2.4) 
t 
+ 

f u (E) Gli: I&, rl BdE = q 0) (2.5) 
t 

We note that (2.6) is a restriction imposed on the instantaneous values of the row- 

vector q (t), so that (2.5). (2.6) can be interpreted as an infinite system of linear func- 

tional inequalities. Problem 1.2 can be transformed in the same way. 

Problem 2.2.1. To find the optimal u* which ensures that 

max,y* [q(t)1 = 8' = mh 'QT<% (2.7) 

from among the m-vector functions Y E v, = (V : [ v I’-< V) . 
Let Fl be a set of the form (2). By virtue of the properties of Fl we now infer that the. 

condition f F_ Fr is equivalent to fl, 31 

whatever the r-vector row-function from J!& It, 41. Here pp,(h) is t’lie supporting 
functional of the set Fl , 

PF~ (W = ma=! h j WWE (1 E F1) 

Expression (2.8) enables us to rewrite condition (2.1) as 

Pi&) G e (2.9) 
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At the same time, concretizing Problems 1.1, 1.2, we obtain 

Problem 2.1.2. To find the optimal @‘of minimal norm 1 0” 11 = min from 

among the m-vector functions v (t) E v satisfying (2.4), (2.5). (z. 9). 

Problem 2.2.2. To find the optimal V” which ensures that 

max$F, (q) = 19 = min,, t<r<o 

from among the functions v E v, satisfying (2.4). (2.5). 
Turning finally to Case (3). we note that the set F~ in this case is regularly convex 

[5] in the space of r-vector functions with restricted variation conjugate to the r-vector 

space C It, 61 with the norm 

VI= max,y* [v (z)l (t<rdW 

The above property of F, implies [S] (as in the case considered in 121) the equivalence 

of the relation f E F, and the inequality 

From this we infer immediately that (2.1) is equivalent to (2.3), so that Problems 

1.1, 1.2 are transformable back into Problems 2.1.1. 2.2.2 in Case (3) for the set Fl 
Consideration of Case (3) shows that complementing the class F (1) up to the class F 
(3). i. e. the class of locally integrable functions to the class of first-order generalized 

functions [3] does not affect the solvability of Problems 1.1, 1.2. 

3. Control with restrictad coordinrtec. Let us consider the linear con- 
trolled system 

dy I dt = A,y + G,u, P (4 = B,Y (4, t<rge (3.1) 
with restricted coordinates 

P w E pe (3.2) 
and the boundary conditions y (t) = 0, y (6) = c (the interval t < ‘F < 6 is fixed). 
We assume that one of the two following conditions holds for P, : 

1) P t = {P (4 = maxz y* [p (r)l G e} (t <r < 6) (3.3) 

2) Pa = (p (r) : PF, @) < 8) (3.4) 

Here y*, pi, are the same as in (2.3). (2.9). From (3. l), (3.2) we obtain the equa- 
tions 8 t 

s Y [fi, El Gu (8 d5 = c, s B,Y [~a El GIN (8 6 = P 6) (3.5) 
t t 

where 
dY IT, Sl / dT = AY 17, 61, Y IT, 71 = E (3.6) 

and either (3.3) or (3.4) applies. 
Let u belong to the class 

u = u U”, u,= {u:~l(~~v} 
Y 

where 1 u 1 is some norm in the appropriate function space. 

Problem 3.1.1. To find the optimal u” with the minimal norm IIu”II = Va= min 
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from among the controls ~6 (c) which take system (3.1) under restrictions (3.2). (3.3) 
either from the state y ft) = 0 to the state y (6) = c or from the state y (t) = y, 
to the state y (6) = &, where 

ye = r(’ lip, tly, = c (3.7) 
Problem 3.1.2. This problem is similar to Problem 3.1.1 with (3.4) replacing 

(3.3). 

Problems 3.1.1, 3.1.2 are control problems with restricted coordinates p- 91. Prob- 
lems of minimization of the restrictions can be formulated in similar fashion, 

Problem 3.2.1, To find the optimal U” which ensures that 

max, v* Ip @)I = min = e0 (f<Z<f)) (3.8) 

from among the controls u E V, which take system (3.1) from y (t) = 0 to g (4+) = c. 
Problem 3.2.2, This is similar to Problem 3.1.1 with the condition 

PF,(JI) = min. = E’ (3.9) 
replacing (3.7). 

Problem 3.1.1 is known as the problem of minimizing the maximum deviation of the 
controlled system from zero n3]. 

4. The durllty of the optimal control rnd tracking problems. 

Let systems (1. l), (1.5) and (3.1) satisfy the conditions 

A 
Then, clearly, 

=- It A' B=B1', G=G, (4.1) 

x [E* rl = y’ IT, &] L: eA(E-t’ , d(f) = PW 
which means that Eqs. (2.4). (‘2.5) are simply Eqs, (3.5). (3.6) transposed, with v (E) 

replacing u (6). 
Xt is important to note that the restrictions on p (7) = - q’ (z) are the same in 

both cases, They are defined by inequalities (2.6), (2.9) in the tracking problem and 

by inequalities (3.2)-(3.4) in the control problem. 
Problems 2.1.1 and 3.1.1, 2.1.2 and 3.1.2 can be made to coincide completely 

simply by taking the same norms for u and v . 
Similarly, Problems 2.2.1 and 3.2.1, 2.2.2 and 3.2.2 coincide under the same 

restrictions U y = V, We shall call the indicated pairs of coincident problems “conju- 

gate” as in IJ]. The following statements are valid. 

Theorem 4.1. Let conjugate systems (1. l), (I. 5). (3.1),(4.1) be given and let 

U , = v,. Let the optimal tracking problem (with constantly acting disturbances) of the 

vector 2 = C’X (r) be considered in the form 2.1.1 (2.1.2) for system (1.1). (1.5). 

Problem 2.1.1 (2.1.2) is then equivalent to the conjugate problem of optimal control 
with restricted coordinates in the form 3.1.1 (3.2.2) for system (3. l), (4.1) under bound- 

ary conditions y (t), y (e) satisfying (3.7) and under restriction (3.3) ( (3.4)). 
Theorem 4.2. Let the optimal tracking problem for the minimum tracking error 

with constantly acting disturbances be considered in the form 2.1.2 (2.2.2) for system 
(1.1). (1.5). Problem 2.1.2 (2.2.2) is then equivalent to the conjugate Problem 3.1.2 
(3.2.2) for the optimal control which minimizes the resrrictions on the coordinates for 

system (3. I), (4.1). 
Note 4.1. The duality of Tracking Problems 2.1, 2.2 and Control Problems 3.1. 

3.2 means that the methods of solution and structure of the solutions of the latter prob- 
lems discussed in detail in [S. 111 are also valid for the former (tracking) problems. 
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Note 4.2. Let a= 0 in Problem 2.1. The phase restrictions (3.3) ((3.4)) in 

conjugate Control Problem 3.1 are then replaced by the condition BS Y (T) s 01 
t < z < 6, which means that the trajectory y (r) must remain in a given subspace En. 

6, Tracking in ayatem with lag. The tracking problem in systems with 
lag can be formulated in various ways lJ.4, 151. We shall consider a problem very simi- 

lar to those analyzed in Sects, 1-4, 

Suppose we are given the n-dimensional system 

dx (T) / dT = As(+#-Gz(?--) (54 

with the constant rs X n-matrices A, G and with a constant lag It > 0. Let the signal 

2 (7) = Naz (z) @<TG@) (5.2) 
be detected in the interval f t, @] , Here 8 is a constant matrix of order m X n. 

We are to find an operationq, fzjwhich isolates the linear combination 5 = c’x (8), 
where c is a given vector and 8 a fixed number, on the basis of an arbitrary signal z (r). 

As in Sect. 1. we seek the operation ‘p in the class cp E @, identifying the latter with 

the functions v (t) E v. 

Problem 5.1. (a) To find an operation cp [Z (t)], cp E @ satisfying the condi- 

tion g, 121 = c’x (*) (5.3) 
whatever the signal Z (7) defined by (5.2). 

b) To find the optimal (p” of minimal norm among the solutions of (5.3). 
In addition to cp [zf we also seek an operation 9~ 173 which isolates the quantity 

6 (8 = c’x (@ + E) = c’ze (E), O<Sbh 

over the entire interval of length h on the basis of any signal z (T), t ,( t < 6 4 E. 

We identify the operation 96 [zl with the function v (E, T), choosing 

‘PC [zl E CD(l) (n (E, z) E V(l)) 
Here 

@(I) = u (D,(l),= {(P~[z]:~‘P~“)~V} (v>O) 

The quantity 11 rp /(I) is a’norm in the space of functions of two variables. 

Problem 5.2, (a) To find an operation q)c [z (z)l, cpf E CD(r) satisfying the 
condition 

rPr 12 (z)J = c’x (@ + E), O<gGh (5.4) 
whatever the signal Z (T) defined by Eq. (5.2) for t < ? < 6 -/- g. 

b) To find the optimal afeof minimal norm from among the solutions of (5.3). 

let us consider Problem 5.1. Expressing the solution of (5.1) with the initial function 

f (8), t - A < s G t in integral form PS], we obtain 

pli(r)l=Su(r)iV(X(~,I)f(I)+ f X(z,s+h)Gf(a)ds)dr 
t t-h 

(X (T, z) = E; X (6, T) = 0,6 < T) 

Here X ($9 7) is a function matrix which satisfies Eq. (5.1) in 6 and the conjugate 
equation dX(S, t)]dz = - X (6, +4 - X(6, s + h)G 
in 7. 
On the other hand, 
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c’s(6) =c’ X@,t)fW+ E, x(%~+WWW 
f.lh 

By the condition of Problem 5.1 the equation q [z (7)] = C’x (6) must be fulfilled 
for any function f (t + a), -h < s & 0. Thus, the condition 

! 

8 

s u (7) NX (t, t) d-c - c’X (~3, 1) 
f a* 

-c 

1 
f (t) -I- 

+(sk ~~(~~~X(~~~+h)Gd~-~~X(~,~+h)G f(s)ds=O 
1 

must be fulfilled for all n-vectors f ($1 and all a-vector functions f (a), 1 - jr /< 

< s & 8. From this we immediately obtain the necessary and sufficient conditions of 

solvability of Problem 5.1, which are reducible to the equations 

a 

s u (r) NX (7, t) dz = C’X (6, t) (5.5) 
f 

a 

s u (r) NX (r, s) Gdz = c’X (49, s) G (t<sdt+h) (5.6) 
t 

Similarly, the solvability conditions for Problem 5.2 are equivalent to the equations 

a+E 

s Y (f, 7) NX (7, t> dz = C’X (8 f E, t) (5.7) 
f 

&+E 

s v(5,t)NX(z,t+rl)Gdt=c'X(6+S,t+rl) VW 
f 

(O$rl~h,O<E-s4 

6. Control in :yrtemc with lng rnd lard. bet us consider the n-dimen- 
sional system 

&/ / d7 = A,y (7) + G,Y (T + 4 f %u (43.1) 
with the lead h > 0, the constant I( X n-matrices A,, Gl I and the I& X M -mat- 

rix N. We choose the control u from the same class U as in Problem 3.1. 

Problem 6.1. (a) The boundary condition 

y (7) =f (z), @<7G#+h 

for system (5.1). where f (fl) - C and f (7) = 0 if 7 > 6 , is given. We are to find 

a control U E U, Lc (r) = 0 for 7 < t which takes system (6.1) from the state 

y (6 + 5) ==f@ + E) (OGEdh) 

to the equilibrium state 

b) To find the optimal u’of minimal norm from among the solutions u (7) of Item (a). 
Our formulation of Problem (6.1) originates in g7]. Problem 6.1 (a) can be solved if 

and only if fi8-201 

Y (G = 0, GV (TIC= 0, t<r,cr+h (6.21 

Writing out these conditions in detail, we obtain the equations 
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~Y(t.r)N,u(I)dT+Y(f.*)c=O 
ia 

ftn 

G, i Y(t+11,~.)N,u(z)dr+G1Y(t+rl,6)c=O 

Here Y (t, ‘c) satisfies Eq. (6.1) (for lo = 0) and the equation with lag 

dz (7) / dz = - z (+I1 - z (7 - h)G, 
and the boundary condition 

P-3) 

in Z . 
Y (t, T) = 0, t > 7; Y (7, 7) = E 

For 
A 1=- A’, Gz = - G’ (6.4) 

we have 
x (4 z) = y’ (r, t) (6.5) 

Problem 6.2. To find a function u (E, z) which satisfiesconditions (6.4, (6.3) 

with 6 replaced by 6, = 6 + % for all 0 < E sg h. 
Problem 6.1 essentially requires that Problem 6.1 be solvable with the variable 

@I (6 G 6, G 6 + h) replacing the variable e in the condition of Problem 6.1 . 
Functions u (&, T) of two variables are admissible in Problem 6.2, however. 

Let problem (6. Z), (6.3) be solved by the function u (7). The function 

24 (El 4 = ZJ (E + 4 *+E>c>>+$ 

u (E, 7) f 0, ret-!-E, r>e+ E 

then solves Problem 6.2. This can be verified directly by considering (6.1)-(6.3) 
with allowance for the stationarity of system (6.1). 

The control problems ( i.e. the analogs of Problem 6.1. 6.2) for the system with lag 

dr (4 / dr = A,r (z) + GBr (7 - h) + B,w VW 
where r is the phase vector and w the control, can be considered in the same way. 

Here, e. g. in the case of Problem 6.1, we are required to take r (T) from the state 

to the state 
fo (4 s 0, 7 < t, f-0 (t) = r* 

r (?) s 0, 6<:zS6fIt 
in the class of controls w E W, w (T) G 0 for T > 6. 

System (6.6) is obtainable from (6.1) for 

A,=-& G,=-G, B,=-B (6.7) 
by introducing inverse time. 

7, The duality of control And tracking for ry:tsmr with lag. 
The fact that Eqs. (5.5). (5.6) are equivalent to (6.2). (6.3) under condition (6.5) implies 
the following statement. 

Theorem 7.1. Let Problem 5.1 (a) on finding the quantity C'X (9) from the 
signal 2 (7) (5.2) detected in [t, S] be considered for system (5.1) with lag. Problem 
5.1 (a) is then equivalent to Problem 6.1 (a) on constructing for system (6.1) with lead 

a control u (T), u (7) = 0 for ‘c < t, z > 6 which takes the system from the state 
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Y @t = c, y (t) z 0 for r > 6 to the equiilbrlum state y fr) sm 0, t-h & z < t. 
Note 7. 1. Condition (6.7) enables us to formulate Duality Theorem 7.1 with 

system (6. l), (6.4) with lead replaced by equivalent system (6,6), (6.7) with lag. Theo- 

rem 7.1. can also be extended to Problem 6.2 and its analogs, 

Note 7.%. We have formulated problems on the precise tracking of the quantity 
c‘x (8) and OR the exact guidance of system (6. I) to the origin. Here, however, as in 

Sects, 1-4, we ean consider the duality between problems on a-trackability and e - 
controllability, where the initial conditions must be satisfied to within a only. Finally, 
it is possible to combine the arguments of Sects, l-4 and 5-7. 

Note 7.3. Theorem 7. I implies that the property of complete (for any c) track- 

ability of system (5. l), (5.2) is equivalent to the property of complete {for any c) con- 
trollabi~~ of system (6. If from the state fy @3) = c, y @) m 0 for r > 6) to the equi- 
librium position, 

Note 7.4. If the controls u (r) on Problem 6.1 (a) are chosen in the class of II th 

order distributions [3:3j, then the sufficient conditions of complete ~on~ollabili~ of sys- 

tem (6.1) are reducible to the general position condition 03 for the matrices A,and IV,. 
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Stabilization of the steady motion of a system by additional forces with minimization 
of a certain functional characterizing control quality a] is considered. The problem of 

determining the form of the integrand in the quality criterion and of the controlling for- 

ces from a certain class in such a way that the Liapunov function for the undontrolled 

system can serve as the Liapunov function for the same system under the action of addi- 

tional controlling forces is inwstigated. This problem is close to the inversion problem 
of analytical regulator construction @I. The problem of optimal stabilization in some 

of the parameters [S] is stated and a theorem generalizing the basic theorem on stabili- 

zation in all the variables fl] is proved. Both problems are considered with specific refe- 
rence to mechanical systems with a generalized energy integral of fixed sign. The results 

are illustrated by means of several examples. These include the problem of optimal 

stabilization of the positions relative to equilibrium and of the steady motions of a gyro- 
stat satellite. 

1. Let us consider the equations of perturbed motion of some system 

d=* 
r = x, @, Xl, * - * 9 x?J (s=I....,n) (1.1) 

whose right sides X, are defined in the domain 

t>t,, j%I<H, H=const>O (s=i,....n) (1.2) 

We assume that the functions X, in domain (1.2) are continuous and that they satisfy 
the conditions which ensure the existence and uniqueness of the solutions of Eqs. (1.1) 
under any initial conditions from the domain (1.2) ; we also assume fulfillment of the 


